fellowship from the A. P. Sloan Foundation and a Teacher-Scholar Grant from the Camille and Henry Dreyfus Foundation.

Registry No. Cp2Rh2(NO)2, 67426-08-8; Cp3Rh3(NO)2, 75495-01-1; Cp₂Rh₂(NO)(NO₂), 75365-54-7; [Rh(CO)₂Cl]₂, 14523-22-9; CpRh(CO)₂, 12192-97-1; Cp₃Rh₃(CO)₃, 12148-54-8.

> Contribution from the Department of Chemistry, Eastern Illinois University, Charleston, Illinois 61920, and SRI International, Menlo Park, California 94025

Mixed-Metal Carbonyl Complexes of Cr, Mo, and W Containing Bridging Ph₂PCH₂CH₂PPh₂

R. L. Keiter, *1a S. L. Kaiser, 1a N. P. Hansen, 1a J. W. Brodack, 1a and L. W. Cary1b

Received May 30, 1980

Numerous carbonyl complexes of Cr, Mo, and W are known which contain Ph₂PCH₂CH₂PPh₂, L-L, as a chelating ligand. Less common are those in which L-L serves as a bridging ligand, particularly between atoms of two different metals.^{2,3} Our recent successes in the syntheses of complexes containing L-L as a monodentate ligand (e.g., (OC)₅WL-L and $(OC)_4W(L-L)_2$) by base and free-radical catalyzed addition reactions prompted us to explore these approaches as avenues to mixed-metal L-L-bridged complexes.⁴

Experimental Section

Physical Measurements. ³¹P NMR and infrared spectra were obtained from chloroform solutions as described elsewhere.⁴ Chemical shifts downfield from H₃PO₄ are measured as positive. Microanalyses were obtained from Galbraith Laboratories, Knoxville, Tenn.

Materials. Diphenylvinylphosphine, diphenylphosphine, and the metal carbonyls were purchased from Pressure Chemical Co. and used without further purification. All reactions were carried out under a nitrogen atmosphere.

 $(OC)_{5}WPPh_{2}CH==CH_{2}$ and $(OC)_{5}WPPh_{2}H$ were prepared as described previously.⁴ (OC)_{5}CrPPh_{2}CH==CH_{2} (38.2%) and (OC)₅WPPh₂H (95%)^{5,6} were prepared by the indirect method of Strohmeier.⁴ (OC)₅MoPPh₂CH=CH₂ (97%) and (OC)₅MoPPh₂H (73%)^{5,6} were prepared from the thermal reaction of phosphine and $Mo(CO)_6$ in 1,2-dimethoxyethane.⁷

 $(OC)_5CrPPh_2CH==CH_2$: mp 58–59 °C; IR 1985 (B_1) , 2067 $(A_1^{(2)})$, 1943 ($\tilde{E} + A_1^{(1)}$); ³¹P NMR δ 47.4.

Anal. Calcd for C₁₉H₁₃O₅PCr: C, 56.45; H, 3.24; P, 7.66. Found: C, 56.33; H, 3.31; P, 7.72.

(OC) $MoPPh_2CH = CH_2$: mp 57-58 °C; IR 1991 (B₁), 2074 (A₁⁽²⁾), 1949 (E + A₁⁽¹⁾); ³¹P NMR δ 29.3.

Anal. Calcd for C19H13O5PMo: C, 50.91; H, 2.92; P, 6.91. Found: C, 50.87; H, 3.07; P, 7.06.

(OC)₅CrPPh₂H: mp 60-61 °C (lit.⁴ mp 55-65 °C); ³¹P NMR δ 32.9.

- (1) (a) Eastern Illinois University. (b) Nicolet Technology Corp., Mt. View, Calif.
- (2) Zingales, F.; Canziani, F. Gazz. Chim. Ital. 1962, 92, 343. Keiter, R. L.; Shah, D. P. Inorg. Chem. 1972, 11, 191. Connor, J. A.; Hudson, G. A. J. Organomet. Chem. 1974, 73, 351. Grim, S. O.; Del Gaudio, L. Malarda, D. B. Talmar, C. A.; Talmar, C. M. J. Chem. Soc. 1974, 96, 3416. Keiter, R. L.; Fasig, K. M.; Cary, L. W. Inorg. Chem. Soc. 1975, 14, 201.
- (3) Werner, D. H.; Prinz, R.; Bundschuh, E.; Deckelmann, K. Angew. Chem., Int. Ed. Engl. 1966, 5, 606. (4) Keiter, R. L.; Sun, Y. Y.; Brodack, J. W.; Cary, L. W. J. Am. Chem.
- Soc. 1979, 101, 2638.
- Smith, J. G.; Thompson, D. T. J. Chem. Soc. A 1967, 1694.
- Treichel, P. M.; Dean, W. K.; Douglas, W. M. J. Organomet. Chem. (6) 1972, 42, 145.
- (7) Grim, S. O.; Wheatland, D. A.; McFarlane, W. J. Am. Chem. Soc. 1967, 89, 5573.

(OC)₅MoPPh₂H: mp 74–75.5 °C (lit.⁴ mp 73–75 °C); ³¹P NMR δ 6.7.

Base-Catalyzed Reactions of (OC)₅MPPh₂H with (OC)₅M'PPh₂CH=CH₂ (M = Cr, Mo, W). The same experimental procedure was used to prepare each of the six dimetallic complexes. The procedure will be illustrated for the molybdenum-tungsten complex. To a solution of (OC)₅WPPh₂H (4.22 mmol) in dry THF (80 ml) were added (OC)₅MoPPh₂CH=CH₂ (4.22 mmol) and potassium tert-butoxide (0.08 g). The solution was heated under reflux for 1 h, cooled, and stripped of solvent; the resulting residue was crystallized from a CH₂Cl₂/CH₃OH mixture to give (OC)₅MoPPh₂CH₂CH₂PPh₂W(CO)₅ in 88% yield.

 $(OC)_{5}MoPPh_{2}CH_{2}CH_{2}PPh_{2}W(CO)_{5}$: mp 195–198 °C dec; IR 1986 (B₁), 2074 (A₁⁽²⁾), 1948 (E + A₁⁽¹⁾); ³¹P NMR δ_{MoP} 31.6 (²J_{PP} = 35.5 Hz), δ_{WP} 12.9 (² J_{PP} = 35.5, J_{WP} = 241.6 Hz).

Anal. Calcd for C₃₆H₂₄O₁₀P₂MoW: C, 45.12; H, 2.52; P, 6.46. Found: C, 44.99; H, 2.62; P, 6.76. (OC)₅MoPPh₂CH₂CH₂PPh₂Cr(CO)₅: mp 190–191 °C dec; IR

1987 (B₁), 2075, 2065 (A₁⁽²⁾), 1950 (E + A₁⁽¹⁾); ³¹P NMR δ_{MoP} 31.8 $({}^{2}J_{PP} = 32.4 \text{ Hz}), \delta_{CrP} 51.1 ({}^{2}J_{PP} = 32.4 \text{ Hz}).$

(OC)₅MoPPh₂CH₂CH₂PPh₂Mo(CO)₅: mp 198-200 °C dec (lit.³ 192–194 °C); IR 1992 (B₁), 2075 (A₁⁽²⁾), 1954 (E + A₁⁽¹⁾); ³¹P NMR $\delta_P 31.7.$

(OC)₅WPPh₂CH₂CH₂PPh₂Cr(CO)₅: mp 205-208 °C dec; IR 1986 (B₁), 2067, 2077 (A₁⁽²⁾), 1944 (E + A₁⁽¹⁾); ³¹P NMR δ_{WP} 13.0 (²J_{PP} = 32.2, J_{WP} = 241.5 Hz), δ_{CrP} 50.9 (²J_{PP} = 32.2 Hz). Anal. Calcd for C₃₆H₂₄O₁₀P₂CrW: C, 47.29; H, 2.65; P, 6.78. Found: C, 46.93; H, 2.78; P, 6.85.

 $(OC)_{5}WPPh_{2}CH_{2}CH_{2}PPh_{2}W(CO)_{5}: mp 217-218 °C dec;^{2} IR$ 1984 $(B_{1}), 2073 (A_{1}^{(2)}), 1943 (E + A_{1}^{(1)}); {}^{31}P NMR \delta_{WP}$ 12.7 (m, MR)ABX pattern, ${}^{2}J_{PP} = 36.6$ Hz, $J_{WP} = 241.6$ Hz).

(OC)₅CrPPh₂CH₂CH₂PPh₂Cr(CO)₅: mp 192-193 °C dec (lit.³ 200–201 °C); IR 1986 (\bar{B}_1), 2065 ($A_1^{(2)}$), 1945 (E + $A_1^{(1)}$); ³¹P NMR δ_P 51.1.

Results and Discussion

There are six possible $(OC)_5ML-LM'(CO)_5$ complexes of Cr, Mo, and W, three homometallic (M = M') and three heterometallic (M \neq M'). Of these only the homometallic complexes have been previously reported.^{2,3}

Substitution reactions provide a straightforward method of synthesis for the homometallic species. For example, L-L displaces Y from (OC)₅MY under mild conditions (eq 1)^{2,8}

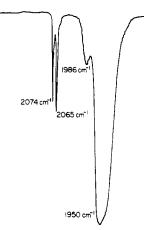
$$2(OC)_{5}MY + L - L \rightarrow (OC)_{5}ML - LM(CO)_{5} + 2Y \qquad (1)$$

$$Y = C_6 H_5 N H_2, I^-$$

The mixed-metal complexes, however, cannot be obtained directly in good yield from such reactions because of competitive formation of the more symmetrical (M = M') products. The $M \neq M'$ complexes could be prepared by isolating (OC)₅ML-L, a complex containing L-L as a monodentate ligand, and allowing it to react with $(OC)_5 M'Y$.

We have now shown that the isolation of the intermediate "dangling" ligand complex may be avoided entirely by using starting materials which all contain coordinated phosphines (eq 2). The reactants are easily synthesized, and the six

NOV DO


$$(OC)_{5}MPPh_{2}CH = CH_{2} + (OC)_{5}M'PPh_{2}H \xrightarrow{KO(I-Bu)} (OC)_{5}MPPh_{2}CH_{2}CH_{2}PPh_{2}M'(CO)_{5} (2)$$

M = Cr, Mo, W and M' = Cr, Mo, W

dimetallic combinations of Cr, Mo, and W are obtained in good yield when the reaction is carried out in the presence of catalytic amounts of potassium tert-butoxide.9 Either combination of reactants gives the desired product. For example, the synthesis of $(OC)_5CrL-LW(CO)_5$ proceeds equally well

Connor, J. A.; Day, J. P.; Jones, E. M.; McEwen, G. K. J. Chem. Soc. (8) 1973. 347.

The free-radical catalyst AIBN does not appear to be useful in these reactions. Reactions with this catalyst led to the formation of blue (9)decomposition products, and only starting materials were isolated.

Carbonyl region of the infrared spectrum of Figure 1. (OC)₅CrPPh₂CH₂CH₂PPh₂Mo(CO)₅.

with (OC)₅WPPh₂CH=CH₂ and (OC)₅CrPPh₂H or with (OC)₅CrPPh₂CH==CH₂ and (OC)₅WPPh₂H as starting materials. The method should be very useful for preparing a variety of bis(tertiary phosphine)-bridged complexes.

The carbonyl regions of the infrared spectra of the three symmetrical complexes (OC)₅WL-LW(CO)₅, (OC)₅MoL- $LMo(CO)_5$, and $(OC)_5CrL-LCr(CO)_5$ show bands expected for pentacarbonyl moieties of C_{4v} symmetry. The E and $A_1^{(1)}$ modes overlap as is often observed for monosubstituted group 6 carbonyl complexes.¹⁰ The mixed-metal complex (OC)₅- $MoL-LW(CO)_5$ gives rise to a spectrum in which molybdenum carbonyl absorptions cannot be distinguished from those of the tungsten carbonyls. Since the $A_1^{(1)}$ modes of $(OC)_5W_2$ L-LW(CO)₅ and (OC)₅MoL-LMo(CO)₅ absorb at 2073 and 2075 cm⁻¹, respectively, resolution of these individual absorptions in $(OC)_5MoL-LW(CO)_5$ would not be expected. For both $(OC)_5CrL-LMo(CO)_5$ and $(OC)_5CrL-LW(CO)_5$, however, resolution of the two $A_1^{(1)}$ modes is achieved, consistent with the difference of approximately 9 cm⁻¹ between the $A_1^{(1)}$ absorption for $(OC)_5CrL-LCr(CO)_5$ and that of either the analogous molybdenum or tungsten complex (Figure 1). The overlapping E modes were not resolved for any of the mixed-metal complexes.

The ³¹P NMR spectra of the mixed-metal complexes show chemical shifts downfield from phosphoric acid in the order Cr > Mo > W as has been observed for simpler systems.¹⁰ The two different phosphorus environments give rise to splitting due to phosphorus-phosphorus coupling. In addition tungsten-183-phosphorus-31 coupling is observed in the spectra of the tungsten complexes.

The ³¹P NMR spectrum of (OC)₅WL-LW(CO)₅ is of special interest (Figure 2). The 14.28% abundant tungsten-183 is distributed such that the $(OC)_5^{183}WL-L^{183}W(CO)_5$, (OC)₅¹⁸³WL-LW(CO)₅, and (OC)₅WL-LW(CO)₅ distribution is 2.03, 24.48, and 73.48%, respectively. The satellite pattern observed in Figure 2 arises from (OC)₅¹⁸³WL-LW- $(CO)_5$. This molecule, which contains two nonequivalent phosphorus nuclei as a result of the tungsten-183 isotope, gives rise to an ABX spectrum. The AB portion of the spectrum consists of two ab subspectra indicated by lines 1, 2, 4, and 6 and by lines 3, 5, 7, and 8. The recently reported NMR analysis of Ph₂P(⁷⁷Se)CHCHP(Se)Ph₂ parallels that for the tungsten complex exactly.¹¹ The value of ${}^{1}J_{WP}$ extracted from this spectrum is 241.6 Hz which is the same as was observed directly in the spectra of the two mixed dimetallic tungsten

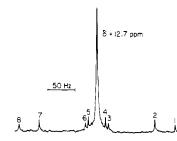


Figure 2. ³¹P NMR spectrum of (OC), WPPh₂CH₂CH₂PPh₂W(CO),

complexes. Within the limit of measurement $(\pm 0.2 \text{ Hz})$, the value for ${}^{4}J_{WP}$ is zero.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Registry No. (OC)₅MoPPh₂CH₂CH₂PPh₂W(CO)₅, 75365-60-5; $(OC)_{5}MoPPh_{2}CH_{2}CH_{2}PPh_{2}Cr(CO)_{5},$ $(OC)_{5}MoPPh_{2}CH_{2}CH_{2}PPh_{2}Mo(CO)_{5},$ 75365-61-6; 14489-09-9; $(OC)_5 WPPh_2CH_2CH_2PPh_2Cr(CO)_5$ 75365-62-7; $(OC)_5 WPPh_2 CH_2 CH_2 PPh_2 W(CO)_5$ 15413-06-6; $(OC)_{5}CrPPh_{2}CH_{2}CH_{2}PPh_{2}Cr(CO)_{5}$ 15024-28-9; $(OC)_{5}WPPh_{2}CH = CH_{2}, 64012 - 10 - 8; (OC)_{5}CrPPh_{2}CH = CH_{2},$ 72868-75-8; (OC)₅MoPPh₂CH=CH₂, 75365-63-8; (OC)₅CrPPh₂H, 18399-60-5; (OC)₅MoPPh₂H, 18399-61-6; (OC)₅WPPh₂H, 18399-62-7.

> Contribution from the Evans Laboratory of Chemistry, The Ohio State University, Columbus, Ohio 43210

Convenient Preparation and Isolation of Pure Potassium Cyclopentadienyldicarbonylferrate, $K[(\eta^5-C_5H_5)Fe(CO)_2]$

Jeffrey S. Plotkin and Sheldon G. Shore*

Received April 7, 1980

Recently developed procedures for the cleavage of metal carbonyl dimers circumvent the need for hazardous, cumbersome reducing agents such as sodium amalgam^{1,2} or sodium potassium alloy.³ Potassium hydride⁴ and certain trialkylborohydrides⁵ efficiently reduce $[Mn(CO)_5]_2$, $[Co(CO)_4]_2$, and $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ in THF solution at room temperature to afford $Mn(CO)_5^-$, $Co(CO)_4^-$, and $(\eta^5-C_5H_5)Mo(CO)_3^-$ in nearly quantitative yield. However, when either of these reagents is employed for the cleavage of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ to $(\eta^5 - C_5 H_5) Fe(CO)_2^-$, sluggish reaction rates are encountered unless a highly coordinating cosolvent such as hexamethylphosphoramide is used with THF. A sodium dispersion in THF serves as a cleavage reagent which has been employed for the in situ preparation of derivatives of Na[$(\eta^5-C_5H_5)$ - $Fe(CO)_2$ ¹³ Since complexes of the type $[(\eta^5-C_5H_5)Fe$ - $(CO)_2 | \overline{R^6}$ (where R = allyl, alkyl) can promote a variety of useful transformations in organic molecules, it is of interest to develop a convenient technique for cleaving $[(\eta^5-C_5H_5) Fe(CO)_2]_2$ which will also yield an isolable salt that can later be used as a stoichiometric reagent under a variety of conditions.

We find that potassium benzophenone ketyl rapidly and cleanly reduces $[(\eta^5 - C_5 H_5)Fe(CO)_2]_2$ in THF at room tem-

- (1)
- King, R. B. Acc. Chem. Res. 1970, 3, 417. King, R. B. "Organometallic Syntheses"; Academic Press: New York, 1965; Vol. 1. (2)
- Ellis, J. E.; Flom, E. A. J. Organomet. Chem. 1975, 99, 263.
- Inkrott, K.; Goetze, R.; Shore, S. G. J. Organomet. Chem. 1978, 154, (4)1978.
- (5) Gladysz, J. A.; Williams, G. M.; Tam, W.; Johnson, D. L.; Parker, D. W.; Selover, J. C. Inorg. Chem. 1979, 18, 553.
 (6) Rosenblum, M. Acc. Chem. Res. 1974, 7, 122.
- (10)
- Verkade, J. G. Coord. Chem. Rev. 1972-1973, 91. Colquhoun, I. J.; McFarlane, H. C. E.; McFarlane, W.; Nash, J. A.; Keat, R.; Rycroft, D. S.; Thompson, D. G. Org. Magn. Reson. 1979, (11)12, 473.